Phytoseius finitimus Ribaga 1904

K, Rana Akyazı, SoysalK, Mete & UeckermannK, Edward A., 2024, Mite species of kiwi vines in Türkiye, Acarologia 64 (4), pp. 1030-1051 : 1043

publication ID

https://doi.org/10.24349/9lvs-4bzy

persistent identifier

https://treatment.plazi.org/id/03CB878E-9F7D-FFF2-6280-23E4FD9CFBBC

treatment provided by

Felipe

scientific name

Phytoseius finitimus Ribaga 1904
status

 

Phytoseius finitimus Ribaga 1904 View in CoL

Material examined — 9 ♀♀. 1 ♀ (Altınordu, N40°56′40.11″ E37°47′7.66″, 366 m, 02. IX.2019), 1 ♀ (Fatsa, N40°57′29.03″ E37°37′33.74″, 163 m, 06. VIII.2018), 1 ♀ (Gülyalı, N40°58′18.10″ E38° 2′11.96″, 0 m, 18. IX.2019), 1 ♀ (Gülyalı, N40°58′37.75″ E37°59′56.64″,

4 m, 02. IX.2019), 1 ♀ (İkizce, N41°4′29.84″ E37°0′40.80″, 490 m, 31. VII.2019), 1 ♀

(Perşembe, N40°59′39.76″ E37°48′54.06″, 15 m, 26. VII.2018), 1 ♀ (Perşembe, N40°59′32.68″ E37°48′47.75″, 16 m, 26. VII.2018), 2 ♀♀ (Ünye, N41°5′56.20″ E37°22′27.90″, 37 m,

18. VII.2018)

Remarks — Phytoseius finitimus was first discovered on Buddleja madagascariensis Lamarck ( Scrophulariaceae ) in Italy by Ribaga (1904). It is a widely distributed predatory species found in 18 countries worldwide ( Demite et al. 2023). It is also a very common predatory species in Türkiye ( İncekulak and Ecevit 2002 ; Akyazı and Ecevit 2003 ; Faraji et al. 2011 ; Gençer Gökçe et al. 2022 ; Miroğlu and Çıkman 2022). In the current study area, it was previously collected from various habitats including persimmon trees ( Akyazı et al. 2017), vegetables ( Soysal and Akyazı 2018), stone ( Altunç and Akyazı 2019), and pome ( Akyol and Akyazı 2022) fruits. It belongs to subtype III-a, which are generalist predators that live on pubescent leaves (leaves with trichomes) ( McMurtry et al. 2013). The species’ small, compressed idiosoma aids in moving between trichomes ( Kreiter et al. 2003 ; Tixier et al. 2007). It was found that the species is commonly found on hairy plants ( Pappas et al. 2013). Phytoseius finitimus has stout, usually serrate setae on its dorsal shield. It can colonize microhabitats that larger phytoseiids cannot, avoiding competition and escaping predation (Seelman et al. 2007). It takes advantage of the presence of prey that also prefer the same microhabitat. In addition, Duso and Vettorazzo (1999) indicated that P. finitimus could be potentially effective in controlling P. ulmi on grape plants. Pappas et al. (2013) also declared that the species is a natural enemy of both tetranychid and eriophyid mites. It can feed on pollen.

Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF