Urothoe grimaldii Chevreux, 1895

Iaciofano, Davide, Mancini, Emanuele, Lubinevsky, Hadas & Brutto, Sabrina Lo, 2024, The amphipod fauna assemblage along the Mediterranean Israeli coast, a spatiotemporal overview, Ecologica Montenegrina 80, pp. 244-272 : 255-272

publication ID

https://doi.org/10.37828/em.2024.80.22

persistent identifier

https://treatment.plazi.org/id/03E97B2D-FFF4-587B-6030-FAD9FC73CE1F

treatment provided by

Felipe

scientific name

Urothoe grimaldii Chevreux, 1895
status

 

Urothoe grimaldii Chevreux, 1895 View in CoL

This urotoid is reported in Atlantic Ocean, Indian Ocean, and Mediterranean Sea ( Sorbe et al., 2002) and in particular for the European waters and Mediterranean Basin is observed in France, England, Germany, Spain, Portugal, Italy, Israel, Tunisia and Turkey ( Gottlieb, 1960; Toulmond, 1964; Ladle, 1975: Kingston and Rachor, 1982; Grémare et al., 1998; Martínez and Adarraga, 2001; Sorbe et al., 2002; Marín-Guirao et al., 2005; Covazzi Harriague et al., 2008; Moreira et al., 2008; Bakalem et al., 2009; Zakhama-Sraieb et al., 2009; Bakir and Katağan, 2014; Sampaio et al., 2016).

Urothoe grimaldii View in CoL is considered a characteristic species of the well sorted fine sand sensu Pérès & Picard (1964) ( Dauvin et al., 2017) and is closely associated with surface and intertidal soft substrates ( Grémare et al.,1998; Momtazi and Maghsoudlou, 2022). This species has been reported on different types of seabeds and intertidal zone of sandy beach ( Dahl, 1952; Daief et al., 2014), sandflats ( Wynberg and Branch, 1997; Siebert and Branch, 2007), coarse sands ( Penas and Gonzalez, 1983; Moreira et al., 2008) fine sands ( Bakalem et al., 2009), Tellina fabula View in CoL sand communities ( Kingston and Rachor, 1982), Spisula subtruncata View in CoL sand community ( Grémare et al.,1998), Ampelisca brevicornis View in CoL fine sand community ( Toulmond, 1964), Amphioxus View in CoL sands ( Chen et al., 2013), mud, mud and sand mixture ( Bakir and Katağan, 2014). Moreover, it was observed in lagoon environments ( Wynberg and Branch, 1997; du Plessis and Pillay, 2022), in soft substrates vegetates by Fucus spp. and Caulerpa cylindracea ( Toulmond, 1964; Lorenti et al., 2011) and as epibiont of loggerhead sea turtle Caretta caretta ( Zakhama-Sraieb et al., 2009) View in CoL . Urothoe grimaldii View in CoL is also adapted to live in polluted coastal areas ( Ibanez et al., 1993) and can survive near urban discharges ( Avramidi et al., 2022).

This species lives exclusively in shallow coastal waters between 0.5 and 20 m ( Penas and Gonzalez, 1983; Moreira et al., 2008; Bakir and Katağan, 2014) and performs seasonal depth migrations. Indeed, it descends to greater depths in summer until it reaches a maximum depth of around 20-30 m ( Amouroux, 1974).

Like all species of the genus Urothoe , U. grimaldii is considered a predator carnivorous species that preys on benthic meiofauna ( Macdonald et al., 2010). Females of this species generally live for two years, while the less long-lived males mature within a year ( Ladle, 1975). This urothoid can also exploit the burrows of some benthic fossorial species as a source of protection and prey seeking, in fact Goulliart (1952) observed that U. grimaldii can live in the tunnels burrowed by the polychaete Arenicola marina (Linnaeus, 1758) . This amphipod is preyed by coastal fish species such as gobies ( Villiers, 1982) and is part of the diet of the flamingo Phoenicopterus roseus Pallas, 1811 ( du Plessis and Pillay, 2022).

In this work, 1593 individuals of this species were sampled and identified. Urothoe grimaldii was observed only on mobile substrates distributed between 8.41 and 12.81 m. Urothoe grimaldii has been consistently observed along the entire coast of Israel, with occasional records in Haifa Bay, but never in the anthropised sites (HM2.1 and HM27).

Spatiotemporal variation

The temporal variation in the richness of all the taxa, i.e. species and genus taxa, and their total abundance was shown for each station during the consecutive years ( Figure 4 View Figure 4 ). In general, the highest abundances were not linked to the highest richness, probably due to the low number of species and the features of sandy amphipod assemblages where local explosions of a few species often occur. An example is the occurrence of 1805 Cheiriphotis mediterranea individuals in station HM2.1 in the year 2014, not comparable to a proportional increase in species richness ( Figure 4 View Figure 4 ).

The absence of correlation between the abundance and the species richness was caused by a differential contribution of different species. The fluctuations in abundance were due to an increase in the dominant species not the rare and sporadic species; in contrast, the richness was determined by the total number of species and taxa, and influenced by the occasional taxa ( Figure 4 View Figure 4 ).

..continued on the next page

The nMDS did not reveal any temporal variation which could have been associated with changes over the eight years ( Figure 5 View Figure 5 ). The contribution of the most abundant species to the taxocenosis profile (SIMPER analysis in Supplement) supported such result, as Perioculodes longimanus and Urothoe grimaldii were the species with the maximum weight in similarity analyses, showing a stable presence. To explore the spatial variability, the long-term monitoring supported the division into two principal zones. The nMDS analysis ( Figure 5 View Figure 5 ) showed a discrepancy in amphipod assemblage between the area corresponding to Haifa Bay (HB) and the zone corresponding to the Southern Israel Coast (SIC).

The spatial variation of the most abundant taxa, i.e. the taxa with more than 150 individuals in the period 2010-2017, was observed to understand how the species were distributed among the stations ( Figure 6 View Figure 6 ). Figure 6 View Figure 6 shows the total number of individuals detected per site. Two different assemblages between the two areas (stations “HM” in Haifa Bay vs. stations “H” in Southern Israeli Coast) are evidenced. Ampelisca spp. was present along the coast of Israel and occasionally close to the Haifa promontory (sites HM27 and H3). Bathyporeia guilliamsoniana was found along the southern coast of Israel and only sporadically in Haifa Bay in 2014 and 2016-2017; it was very abundant in the southern coastal area, in the region between the Haifa promontory and Tel Aviv (H3-H13), with lower abundances southernmost close to the Israeli desalination plants (sites H19-H24 and H28). Cheiriphotis mediterranea was found abundant in Haifa Bay and only occasionally along the southern coast of Israel, with a localised discrete amount in the southern coast close to the Israeli desalination plants (sites H19- H24 and H28). Grandidierella bonnieroides , a species recorded for the first time in 2014 in Haifa Bay, showed sporadic occurrence in other sites. Megaluropus massiliensis showed a homogeneous distribution along the coast, and higher abundances around the Haifa port sites (HM10 and HM23.1), Tel Aviv (H13), and Ashkelon (H28). Perioculodes longimanus was consistently present in high abundance along the entire coast of Israel, confirming its tolerance to different conditions. Photis longicaudata was collected only in the Bay of Haifa, close to the ports, (H2.1 and HM27), and sporadically close to the desalination plants, particularly starting from 2015 (sites H19-H24 and H28). Urothoe grimaldii was a dominant species along the southern Israeli coast and occasionally in Haifa Bay.

The spatial distribution of the most abundant taxa and granulometry dataset was analysed through a principal component analysis (PCA). A substantial diversity was scored between Haifa Bay Port (HM27) and Haifa Bay harbour (HM2.1) sites and the other stations ( Figure 7 View Figure 7 ). The PCA plot indicates significant site discrepancy ( Figure 7 View Figure 7 ). The first two PCA axes explained respectively the 83.1 and 9.6 % of the total variation. The first principal component separated the sites based on the relevant presence of Cheiriphotis mediterranea + Photis longicaudata species in Haifa Bay (HM2.1 and HM27) (see also Figure 6 View Figure 6 ) and the gravel/coarse sediment. The second principal component distinguished the sites due to the presence of Bathyporeia guilliamsoniana + Perioculodes longimanus + Urothoe grimaldii assemblage (see also Figure 6 View Figure 6 ) and the fine sand sediment.

Discussion

Marine biodiversity changes across spatial and temporal scales and the extent of such changes can depend on the context and the taxon investigated ( Steger et al. 2024). In this paper, a monitoring survey along the Israeli coast provided an example of what a multiscale approach can reveal.

A study of the Israeli amphipod fauna – a dominant taxon of the marine ecosystems – was conducted along the coast on the soft littoral bottom area for eight years. This was the first temporal quantitative study performed on the benthic amphipod fauna in the country. Twenty-five taxa (species or genera) were recorded from a sampling effort in the same stations, located in the northernmost Haifa Bay and along the southern coast, at the same depth range.

The dataset showed an overall stable assemblage of the most common species, with sporadic records of occasional species usually associated with macroalgae or seagrasses reaching very low abundances, generally, less than 150 individuals or detected once over the eight years.

Seven species showed the highest abundances and a temporally constant presence: the Levantine endemic Cheiriphotis mediterranea ; the Mediterranean endemic Megaluropus massiliensis ; the NE Atlantic–Mediterranean Bathyporeia guilliamsoniana and Perioculodes longimanus ; and Photis longicaudata and Urothoe grimaldii presumably widely distributed in the Atlantic Ocean, the Mediterranean Sea and the Indian Ocean. The most significant change was the detection of an alien species in 2014, the circumtropical aorid Grandidierella bonnieroides which resulted naturalized ( Lo Brutto et al. 2016).

This is not the only Non-Indigenous (NIS) amphipod species detected in Israeli waters; Bemblos leptocheirus, and Paracaprella pusilla were documented in the region at different sites not included in the present paper ( Lo Brutto et al., 2019; Lo Brutto and Iaciofano, 2020).

The abundance of these seven species was observed to be unstable at the local level, as fluctuations occurred in the different stations. The range of abundance fluctuations was considerable, encompassing peaks of high numbers of individuals concentrated in specific years which differed among the species; for instance, Cheriphotis mediterranea reached 1805 individuals in station HM2.1 in 2014. No correlation was observed between the total abundance per site and year and the species richness, as the fluctuating abundances were attributable to the few dominant species and the assemblages showed a low α- diversity.

The random fluctuations mirrored the ecological traits of the species ( Navarro-Barranco et al., 2017). The taxa identified in the present study can be classified as hyperbenthos, representing the predominant benthic boundary layer faunal component. The inhabitants of the water layer adjacent to the seabed feed on organic particles on the bottom and, at the same time, are capable of vertical migrations, playing a significant trophic role in the benthic communities and within water column food webs ( Buhl-Jensen and Fosså, 1991; Koulouri et al., 2013). These features made the species influenceable by anthropogenic drivers impacting the littoral communities such as nutrient enrichment.

The taxocenosis observed was characterised by deposit feeders on the surface of the bottom, such as ampeliscids, Bathyporeia and Urothoe genus, and species able to perform vertical migrations, such as B. guilliamsoniana , M. massiliensis and P. longimanus . However, a long-temporal variation in the faunal structure which was expected due to the increase of anthropogenic and environmental stressors was not observed.

The analyses detected only a significant spatial variation that discriminated Haifa Bay from the Southern Israeli Coast .

The physical features of the sediment frequently play a crucial role in shaping amphipod assemblage structure ( Buhl-Jensen & Fosså, 1991; Fanelli et al., 2011; de-la-Ossa-Carretero et al., 2012; Scipione, 2013). Along Israeli coast, the bottom, in terms of sediment grain size and chemical composition ( Lubinevsky et al., 2019), displayed two areas of different substratum, with which amphipods were associated. Haifa Bay area was more polluted and eutrophic and with a higher portion of gravel, and coarse and medium sand than the Southern Israeli Coast ( Lubinevsky et al., 2019). As a consequence, the seven most abundant species were spatially distributed according to the type of sediment that favoured their feeding habit. The different species compositions between the two areas reflected the local environmental features.

The information about the sensitivity of the dominant species to disturbances is worthy of remarks. According to de-la-Ossa-Carretero et al. (2012) shallow soft-bottom amphipods can show different sensitivity levels due to their burrowing behaviour; fossorial can show higher sensitivity than domicolous species. This prediction is confirmed in the present paper. Fossorial species, such as Bathyporeia guilliamsoniana , Perioculodes longimanus , and particularly Urothoe grimaldii ( Scipione, 2013) , showed a negative response to polluted stations, where they reduced their abundance; other fossorial species showed an unclear pattern or, indeed, a certain tolerance such as Megaluropus massiliensis , previously indicated as sensitive to polluted areas ( Çinar et al., 2015) and present here with the high abundances around the Haifa harbour localities. The domicolous filter feeders Cheiriphotis mediterranea and Photis longicaudata ( Scipione, 2013) characterized the gravel/coarse sediment stations in Haifa Bay, an area which receives pollutants from rivers effluent of chemical and petrochemical industries, urban and agricultural runoff, and from the Haifa municipality domestic sewage treatment plants.

The dataset also provided biogeographical information on certain species that, to date, appear to exhibit a wide geographic distribution, including U. grimaldii and P. longimanus , the latter of which was unexpectedly documented from the Barents Sea to New Zealand. These geographical ranges must be subjected to rigorous examination and verification, as it is highly improbable that some of these species can be found in areas that are geographically distant or in habitats with markedly dissimilar environmental characteristics. Urothoe grimaldii , a species typically found in sandy habitats, was documented as an epibiont of loggerhead sea turtles ( Zakhama-Sraieb et al., 2009). Similarly, P. longimanus was reported in the literature as both an infralittoral and bathyal species ( Cartes et al., 2007). The present paper shows that the benthic fauna in Israeli coastal marine environments has not changed over time, showing a pattern congruent with long-term analyses of other taxa (molluscs in Steger et al., 2024). Considering the low species richness, changes in amphipod assemblages are expected to be particularly evident if they occur in the future. In this respect, this comprehensive dataset contributes to our knowledge of the Levantine area and its fauna. Data extrapolated from a long time series provide an accurate baseline for detecting putative changes in biodiversity, and a precise understanding of species distributions is essential for monitoring the impact of climate change on marine ecosystems.

Acknowledgments

Financial support was provided by the Department DiSTeM of the University of Palermo and by the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union – Next Generation EU. Project code CN_00000033, Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP D33C22000960007, Project title “National Biodiversity Future Center - NBFC”. The authors are grateful to Bella Galil for providing some samples included in the study and Beatrice Scipione for the interesting discussion aimed at improving the manuscript.

References

Amouroux, J. M. (1974) Étude des peuplements infralittoraux de la côte du Roussillon. II.— Faunistique et caractéristiques bionomiques. Vie et Milieu, 24, 209–222.

Atta, M. M. (1988) A check list of amphipods recorded from Alexandria Mediterranean waters. Bulletin of the National Institute of Oceanography and Fisheries, Arab Republic of Egypt, 14 (1), 279- 281.

Avramidi, E., Gómez, S. C. G., Papaspyrou, S., Louca, V., Xevgenos, D. & Küpper, F. C. (2022) Benthic biodiversity near brine discharge sites in the Port of Rotterdam. Water Resources and Industry, 27, 100173.

Bakalem, A. (1998) Communities of sands in Algerian coasts: Amphipodes and pollution; Peuplement des sables fins des cotes algeriennes: Amphipodes et pollution. International symposium on marine pollution. (IAEA-SM-- 354). International Atomic Energy Agency (IAEA)

Bakalem, A., Ruellet, T. & Dauvin, J. C. (2009) Benthic indices and ecological quality of shallow Algeria fine sand community. Ecological indicators, 9 (3), 395–408.

Bakalem, A., Dauvin, J. C. & Menioui, M. (2024) Diversity of marine Amphipods (Crustacea, Peracarida) from the North African shelf of the Mediterranean Sea (Morocco, Algeria, Tunisia, Libya, Egypt). An updated checklist for 2023. Mediterranean Marine Science, 25 (2), 311–373.

Bakir, K. (2012) Contributions to the knowledge of crustaceans on soft bottoms in the Sea of Marmara, with a checklist. Crustaceana, 219–236.

Bakir, A. K. & Katağan, T. (2014) Distribution of littoral benthic amphipods off the Levantine coast of Turkey with new records. Turkish Journal of Zoology, 38 (1), 23–34.

Ballesteros, E., Cebrian, E., Sant, N., Tomàs, F., Rodríguez-Prieto, C., López, P. & Pinedo, S. (2020) El bentos dels fons infralitorals. Monografies de la Societat ďHistòria Natural de les Balears, 30.

Barnard, J. L., Sandved, K. & Thomas, J. D. (1991) Tube-building behavior in Grandidierella, and two species of Cerapus. In VIIth International Colloquium on Amphipoda: Proceedings of the VIIth International Colloquium on Amphipoda held in Walpole, Maine, USA, 14–16 September 1990 (pp. 239–254). Springer Netherlands.

Beare, D. J. & Moore, P. G. (1997) The contribution of Amphipoda to the diet of certain inshore fish species in Kames Bay, Millport. Journal of the Marine Biological Association of the United Kingdom, 77 (3), 907–910.

Beare, D. J. & Moore, P. G. (1998) Aspects of the life histories of Perioculodes longimanus, Pontocrates arcticus and Synchelidium maculatum (Crustacea: Amphipoda) at Millport, Scotland. Journal of the Marine Biological Association of the United Kingdom, 78 (1), 193–209.

Belatoui, A., Bouabessalam, H., Hacene, O. R., de-la-Ossa-Carretero, J. A., Martinez-Garcia, E. & Sánchez-Lizaso, J. L. (2017) Environmental effects of brine discharge from two desalination plants in Algeria (South Western Mediterranean). Desalin. Water Treat, 76, 311–318.

Bellan-Santini D. & Ledoyer M (1973) Inventaire des Amphipodes Gammariens récoltés dans la région de Marseille. Tethys, 4 (4), 899–933.

Bellan-Santini, D. (1990) Mediterranean deep-sea amphipods: composition, structure and affinities of the fauna. Progress in Oceanography, 24 (1-4), 275–287.

Bellisario, B., Camisa, F., Nascetti, G., Lattanzi, L. & Cimmaruta, R. (2016) Spatial and temporal variation of coastal mainland vs. insular amphipod assemblages on Posidonia oceanica meadows. Marine Biodiversity, 46, 355–363.

Blanchet, H., de Montaudouin, X., Chardy, P. & Bachelet, G. (2005) Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France). Estuarine, Coastal and Shelf Science, 64 (4), 561–576.

Bossanyi, J. (1957) A preliminary survey of the small natant fauna in the vicinity of the sea floor off Blyth, Northumberland. The Journal of Animal Ecology, 353–368.

Buhl-Jensen, L. (1986) The benthic amphipod fauna of the west-Norwegian continental shelf compared with the fauna of five adjacent fjords. Sarsia, 71 (3-4), 193–208.

Buhl-Jensen, L. & Fosså, J. H. (1991) Hyperbenthic crustacean fauna of the Gullmarfjord area (western Sweden): species richness, seasonal variation and long-term changes. Marine Biology, 109, 245–258.

Cartes, J. E., Papiol, V., Palanques, A., Guillén, J. & Demestre, M. (2007). Dynamics of suprabenthos off the Ebro Delta (Catalan Sea: western Mediterranean): Spatial 13 and temporal patterns and relationships with environmental factors. Estuarine, Coastal and Shelf Science, 75 (4), 501–515.

Cartes, J. E., Ligas, A., De Biasi, A. M., Pacciardi, L. & Sartor, P. (2009) Small-spatial scale changes in productivity of suprabenthic and infaunal crustaceans at the continental shelf of Ebro Delta (western Mediterranean). Journal of Experimental Marine Biology and Ecology, 378 (1-2), 40– 49.

Carvalho, S., Cunha, M. R., Pereira, F., Pousão-Ferreira, P., Santos, M. N. & Gaspar, M. B. (2012) The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgoland Marine Research, 66, 489–501.

Chen, Y., Cheung, S. G. & Shin, P. K. S. (2013) A baseline study of benthic community associated with Amphioxus Sand in subtropical Hong Kong. Marine pollution bulletin, 72 (1), 274–280.

Çinar, M. E., Bakir, K., Öztürk, B., Katağan, T., Dağli, E., Açik, Ş., ... & Bakir, B. B. (2015) TUBI (TUrkish Benthic Index): A new biotic index for assessing impacts of organic pollution on benthic communities. Journal of Black Sea/Mediterranean Environment, 21 (2), 135–168.

Clarke KR, Gorley RN. (2006) Primer v6: User Manual/Tutorial. Prim Plymouth.

Coates, D. A., Kapasakali, D. A., Vincx, M. & Vanaverbeke, J. (2016) Short-term effects of fishery exclusion in offshore wind farms on macrofaunal communities in the Belgian part of the North Sea. Fisheries Research, 179, 131–138.

Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., ... & Voultsiadou, E. (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PloS One, 5 (8), e11842.

Colosio, F., Abbiati, M. & Airoldi, L. (2007) Effects of beach nourishment on sediments and benthic assemblages. Marine Pollution Bulletin, 54 (8), 1197–1206.

Conradi, M. & López-González, P. J. (1999) The benthic Gammaridea (Crustacea, Amphipoda) fauna of Algeciras Bay (Strait of Gibraltar): distributional ecology and some biogeographical considerations. Helgoland marine research, 53, 2–8.

Covazzi Harriague, A., Panciroli, H., Drago, N., Mori, M. & Albertelli, G. (2008) Crustacean assemblages of the South Tyrrhenian Archipelago and Ustica Island (Italy, NW Mediterranean). Atti dell'Associazione Italiana di Oceanologia e Limnologia, 19, 167-176.

Cruz, S., Gamito, S. & Marques, J. C. (2003) Spatial distribution of peracarids in the intertidal zone of the Ria Formosa (Portugal). Crustaceana, 76 (4), 411–431.

Curatolo, T., Calvaruso, C., Galil, B. S. & Lo Brutto, S. (2013) Geometric morphometry supports a taxonomic revision of the Mediterranean Bathyporeia guilliamsoniana (Spence Bate, 1857) (Amphipoda, Bathyporeiidae). Crustaceana, 86 (7-8), 820–828.

Dahl, E. (1952) Some aspects of the ecology and zonation of the fauna on sandy beaches. Oikos, 4 (Fasc. 1), 1-27.

Daief, Z., Borja, A., Joulami, L., Azzi, M., Fahde, A. & Bazairi, H. (2014) Assessing benthic ecological status of urban sandy beaches (Northeast Atlantic, Morocco) using M-AMBI. Ecological Indicators, 46, 586–595.

Dando, P. R., Hughes, J. A. & Thiermann, F. (1995) Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. Geological Society, London, Special Publications, 87 (1), 303–317.

Dauvin, J. C. (1987) Evolution à Long terme (1978–1986) des populations d'Amphipodes des sables fins de la pierre noire (baie de morlaix, manche occidentale) aprss la catastrophe de l'Amoco Cadiz. Marine Environmental Research, 21 (4), 247–273.

Dauvin, J. C. & Gentil, F. (1990) Conditions of the peracarid populations of subtidal communities in northern Brittany ten years after the Amoco Cadiz oil spill. Marine Pollution Bulletin, 21 (3), 123–130.

Dauvin, J. C. (1999) Mise it jour de la liste des especes d'Amphipodes (Crustacea: Peracarida) presents en Manche. Cahiers de Biologie Marine, 40, 165–184.

Dauvin, J. C., Bakalem, A., Baffreau, A., Delecrin, C., Bellan, G., Lardicci, C., ... & Grimes, S. (2017) The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures. Environmental pollution, 224, 336-351.

Day, I. H. (1981) Estuarine ecology with particular reference to southern Africa. AA Balkema, Cape Town.

De Grave, S. & Casey, D. (2000) Influence of sampler shape and orientation on density estimates on intertidal macrofauna. Journal of the Marine Biological Association of the United Kingdom, 80 (6), 1125–1126.

Degraer, S., Wittoeck, J., Appeltans, W., Cooreman, K., Deprez, T., Hillewaert, H., ... & Vincx, M. (2006) The macrobenthos atlas of the Belgian part of the North Sea. Belgian science policy.

de-La-Ossa-Carretero, J. A., Dauvin, J. C., Del-Pilar-Ruso, Y., Giménez-Casalduero, F. & Sánchez-Lizaso, J. L. (2010) Inventory of benthic amphipods from fine sand community of the Iberian Peninsula east coast (Spain), western Mediterranean, with new records. Marine Biodiversity Records, 3, e119.

de-la-Ossa-Carretero, J. A., Del-Pilar-Ruso, Y., Giménez-Casalduero, F., Sánchez-Lizaso, J. L. & Dauvin, J. C. (2012) Sensitivity of amphipods to sewage pollution. Estuarine, Coastal and Shelf Science, 96, 129-138.

de-la-Ossa-Carretero, J. A., Del-Pilar-Ruso, Y., Loya-Fernández, A., Ferrero-Vicente, L. M., Marco- Méndez, C., Martinez-Garcia, E. & Sánchez-Lizaso, J. L. (2016) Response of amphipod assemblages to desalination brine discharge: impact and recovery. Estuarine, Coastal and Shelf Science, 172, 13–23.

Diviacco, G. & Bianchi, C. N. (1987) Faunal interrelationships between lagoonal and marine amphipod crustacean communities of the Po river delta (Northern Adriatic). In Anales de biologia (No. 12, pp. 67-77). Servicio de Publicaciones de la Universidad de Murcia.

d'Udekem d’Acoz, C. (2004) The genus Bathyporeia Lindström, 1855, in western Europe (Crustacea: Amphipoda: Pontoporeiidae). Zoologische Verhandelingen, 348, 3–162.

d'Udekem d'Acoz, U. & Vader, W. (2005) The Mediterranean Bathyporeia revisited (Crustacea, Amphipoda, Pontoporeiidae), with the description of a new species. Bollettino del Museo Civico de Storia Naturale di Verona, 29, 3–38.

Dumitrache, C., Filimon, A., Abaza, V. & Zaharia, T. (2013) Recent data on benthic populations from the sandy bottom community in the marine zone of the Danube delta biosphere reserve (ROSCI0066). Revista Cercetări Marine- Revue Recherches Marines-Marine Research Journal, 43 (1), 219–231.

du Plessis, D. S. & Pillay, D. (2022) Temporal interactions with flamingo (Phoenicopterus roseus) foraging plasticity: basal resources, assemblage structure and benthic heterogeneity. Estuarine, Coastal and Shelf Science, 264, 107659.

Eleftheriou, A. & Robertson, M. R. (1992) The effects of experimental scallop dredging on the fauna and physical environment of a shallow sandy community. Netherlands Journal of Sea Research, 30, 289–299.

Elmhirst, R. (1932) XXI.—Studies in the Scottish Marine Fauna. The Crustacea of the Sandy and Muddy Areas of the Tidal Zone. Proceedings of the Royal Society of Edinburgh, 51, 169–175.

Faasse, M. A. & Stikvoort, E. (2002) Mariene en estuariene vlokreeftjes van zachte bodems in het Deltagebied (Crustacea: Gammaridea). Nederlandse Faunistische Mededelingen, 17, 57–86.

Falciai, L. & Spadini, V. (1985) Gli anfipodi del piano infralittorale del tirreno centro-settentrionale. Atti Società Toscana di Scienze Naturali, Memorie, Serie B, 92, 145–163.

Falconetti, C. (1970) Etude faunistique d'un faciès:" La Gravelette" ou Maërl de Castiglione (Algérie) (Doctoral dissertation).

Fanelli, E., Cartes, J. E., Badalamenti, F., D’Anna, G., Pipitone, C., Azzurro, E., Rumolo, P. & Sprovieri, M. (2011) Meso-scale variability of coastal suprabenthic communities in the southern Tyrrhenian Sea (western Mediterranean). Estuarine, Coastal and Shelf Science, 91 (3), 351–360.

Flynn, M. N. & Valério-Berardo, M. T. (2009) Depth-associated patterns in the development of Amphipoda (Crustacea) assemblages on artificial substrata in the São Sebastião Channel, Southeastern Brazil. Nauplius, 17 (2), 127–134.

Flynn, M. N. & Valèrio-Berardo, M. T. (2012) Avaliação da toxicidade in situ através do recrutamento de comunidade incrustante em painéis artificiais em terminal da Petrobrás, Canal de São Sebastião, São Paulo. RevInter Revista Intertox de Toxicologia, Risco Ambiental e Sociedade, 5, 103–114.

Galil, B. S. (2023) A sea, a canal, a disaster: the suez canal and the transformation of the mediterranean biota. In The suez canal: past lessons and future challenges (pp. 199-215). Cham: Springer International Publishing.

Galparsoro, C. S. V. (1999) El suprabentos de les platges catalanes, un racó de biodiversitat. Atzavara, L', 8, 33–44.

Gerovasileiou, V., Akyol, O., Al-Hosne, Z., Rasheed, R. A., Atac, E., Bello, G., ... & Zava, B. (2020) New records of rare species in the Mediterranean Sea (May 2020). Mediterranean Marine Science, 21 (2), 340–359.

Gottlieb, E. (1960) The benthonic Amphipoda of the Mediterranean coast of Israel. I. Notes on the geographical distribution. Bulletin of the Research Council of Israel, section B: Zoology, 9 (2– 3), 157–166, 1 fig

Goulliart, M. (1952) Observations biologiques et recherches sur le pigment respiratoire chez l’amphipode Urothoe grimaldii (Chevreux). Bulletin de la Société zoologique de France, 11, 388–394.

Grémare, A., Amouroux, J. M. & Vétion, G. (1998) Long-term comparison of macrobenthos within the soft bottoms of the Bay of Banyuls-sur-mer (northwestern Mediterranean Sea). Journal of Sea Research, 40 (3-4), 281–302.

Greze, I. I. (1968) Nutrition et groupements trophiques des Amphipodes du complexe méditerranéen dans la mer Noire. Rapports commission internationale pour l'exploration scientifique de la Mer Méditerranée, 19 (2), 163–165.

Grintsov, V. A. (2022) Taxonomic diversity of Amphipoda (Crustacea) from the Black Sea and the Sea of Azov. Marine Biological Journal, 7 (1), 34-45.

Grizzle, R. E. (1984) Pollution indicator species of macrobenthos in a coastal lagoon. Marine Ecology Progress Series, 191–200.

Guerra-García, J. M., Navarro-Barranco, C., Corzo, J., Cobos-Munoz, V., García-Adiego, E. M., Giménez, F. S. & García-Gómez, J. C. (2013) An illustrated key to the soft-bottom caprellids (Crustacea: Amphipoda) of the Iberian Peninsula and remarks to their ecological distribution along the Andalusian coast. Helgoland Marine Research, 67, 321–336.

Guerra-García, J. M., De Figueroa, J. T., Navarro-Barranco, C., Ros, M., Sánchez-Moyano, J. E. & Moreira, J. (2014) Dietary analysis of the marine Amphipoda (Crustacea: Peracarida) from the Iberian Peninsula. Journal of Sea Research, 85, 508–517.

Heard, R. W. & Lutz, L. B. (1982) Guide to common tidal marsh invertebrates of the northeastern Gulf of Mexico.

Heip, C. & Craeymeersch, J. A. (1995) Benthic community structures in the North Sea. Helgoländer Meeresuntersuchungen, 49, 313–328.

Herut, B. & IOLR Scientists (2022) The National Monitoring Program of Israel's Mediterranean Waters– scientific perspectives. Ninth International Symposium “Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques”, Firenze University Press, pp. 677–684. https://dx.doi.org/10.36253/979-12-215-0030-1.64

Hindarti, D., Arifin, Z., Prartono, T., Riani, E. & Sanusi, H. S. (2015) Survival of tropical benthic amphipod grandidierella bonnieroides stephensen 1948 on different sediment particle size: implications for ecotoxicological testing. International Journal of Marine Science, 5(34).

Hochkirch, A., Samways, M. J., Gerlach, J., Böhm, M., Williams, P., Cardoso, P., ... & Dijkstra, K. D. B. (2021) A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35 (2), 502–509.

Horton, T., De Broyer, C., Bellan-Santini, D., Coleman, C. O., Copilaș- Ciocianu, D., Corbari, L., ... & Zeidler, W. (2023) The World Amphipoda Database: history and progress. Records of the Australian Museum, 75 (4), 329–342. https://doi.org/10.3853/j.2201-4349.75.2023.1875

Iaciofano, D., & Lo Brutto, S. (2017) Parhyale plumicornis (Crustacea: Amphipoda: Hyalidae): is this an anti-lessepsian Mediterranean species? Morphological remarks, molecular markers and ecological notes as tools for future records. Systematics and Biodiversity, 15 (3), 238–252.

Ibanez, F., Dauvin, J. C. & Etienne, M. (1993) Comparaison des évolutions à long terme (1977–1990) de deux peuplements macrobenthiques de la baie de Morlaix (Manche occidentale): relations avec les facteurs hydroclimatiques. Journal of experimental marine biology and ecology, 169 (2), 181–214.

Jones, N. S. (1950) Marine bottom communities. Biological Reviews, 25 (3), 283–313.

Karaçuha, M. E., Sezgin, M. & Dağli, E. (2009) Temporal and spatial changes of crustaceans in mixed eelgrass beds, Zostera marina L. and Z. noltii Hornem., at the Sinop peninsula coast (the southern Black Sea, Turkey). Turkish Journal of Zoology, 33 (4), 375–386.

Kingston, P. F. & Rachor, E. (1982) North Sea level bottom communities. ICES CM, 50, 41.

Kirkim, F., Sezgin, M., Katağan, T., Bat, L. & Aydemir, E. (2006) Some benthic soft- bottom crustaceans along the Anatolian coast of the Black Sea. Crustaceana, 79 (11), 1323–1332.

Klein, G., Rachor, E. & Gerlach, S. A. (1975) Dynamics and productivity of two populations of the benthic tube-dwelling amphipod Ampelisca brevicornis (Costa) in Helgoland Bight. Ophelia, 14 (1-2), 139–159.

Koulouri, P., Dounas, C. & Eleftheriou, A. (2013) Hyperbenthic community structure over oligotrophic continental shelves and upper slopes: Crete (South Aegean Sea, NE Mediterranean). Estuarine, Coastal and Shelf Science, 117, 188–198.

Kröncke, I. (2011). Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estuarine, Coastal and Shelf Science, 94 (3), 234–245.

Kudrenko, S. A. (2016) Amphipod (Crustacea, Amphipoda) communities in the north-western part of the Black Sea. Vestnik zoologii, 50 (5), 387–394.

Ladle, M. (1975) The Haustoriidae (Amphipoda) of Budle Bay, Northumberland. Crustaceana, 37-47.

Lalana‐Rueda, R. & Gosselck, F. (1986) Investigations of the benthos of mangrove coastal lagoons in southern Cuba. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 71 (6), 779–794.

Lattanzi, L., Targusi, M. & Nicoletti, L. (2013) Amphipod assemblages before and after beach nourishment in the central Adriatic Sea (Italy). Crustaceana, 86 (7-8), 853–870.

LeCroy, S. E., Richardson, J. S. & Cobb, D. (2002) An illustrated identification guide to the nearshore marine and estuarine gammaridean Amphipoda of Florida (Vol. 1, p. 2000). Florida Department of Environmental Protection, Division of Resource Assessment and Management, Bureau of Laboratories [Biology Section].

LeCroy, S. E., Gasca, R., Winfield, I., Ortiz, M., Escobar-Briones, E., Felder, D. L. & Camp, D. K. (2009) Amphipoda (Crustacea) of the Gulf of Mexico. Gulf of Mexico: origins, waters and biota, 1, 941–972.

León, T. M. & Corrales, M. J. (1995) Suprabentos de la playa de Rosas (Gerona, Mediterráneo occidental). Orsis: organismes i sistemes, 83–90.

Lo Brutto, S., Badalucco, A. & Smit, H. (2024) First occurrence of the mite Litarachna duboscqi Walter, 1925 (Acariformes: Pontarachnidae) in the central Mediterranean Sea. Ecologica Montenegrina, 75, 85–90. https://dx.doi.org/10.37828/em.2024.75.7

Lo Brutto, S., Iaciofano, D., Lubinevsky, H. & Galil, B. S. (2016) Grandidierella bonnieroides Stephensen, 1948 (Amphipoda, Aoridae) – first record of an established population in the Mediterranean Sea. Zootaxa, 4092 (4), 518–528.

Lo Brutto, S., Iaciofano, D., Guerra García, J.M., Lubinevsky, H. & Galil, B.S. (2019) Desalination effluents and the establishment of the non-indigenous skeleton shrimp Paracaprella pusilla Mayer, 1890 in the south-eastern Mediterranean. BioInvasions Records, 8 (3), 661–669.

Lo Brutto, S. & Iaciofano, D. (2020) New records of amphipod crustaceans along the Israeli Mediterranean coast, including a rare Mediterranean endemic species, Maera schieckei Karaman & Ruffo, 1971. Biodiversity Data Journal, 8.

Lo Brutto, S., Schimmenti, E., Iaciofano, D., Lubinevsky, H., Cesari, M. & Guidetti, R. (2022) The morphological diversity within a species can obscure the correct identification. Zoologischer Anzeiger, 299, 106–114.

Lorenti, M., Gambi, M. C., Guglielmo, R., Patti, F. P., Scipione, M. B., Zupo, V. & Buia, M. C. (2011) Soft‐bottom macrofaunal assemblages in the Gulf of Salerno, Tyrrhenian Sea, Italy, an area affected by the invasion of the seaweed Caulerpa racemosa var. cylindracea. Marine Ecology, 32 (3), 320–334.

Lourido, A., Moreira, J. & Troncoso, J. S. (2010) Spatial distribution of benthic macrofauna in subtidal sediments of the Ría de Aldán (Galicia, northwest Spain). Scientia Marina, 74 (4), 705–715.

Lubinevsky, H., Herut, B. & Tom, M. (2019) Monitoring long-term spatial and temporal trends of the infaunal community characteristics along the shallow waters of the Mediterranean coast of Israel. Environmental monitoring and assessment, 191, 1–17.

Luís, M. V. (2007) Efecte de l'alga exòtica Caulerpa racemosa (Forsskal) J Agardh sobre la comunitat de crustacis amfipodes en fons somers del Baix Vinalopó (Santa Pola). Rella, La, 89–110.

Macdonald, T. A., Burd, B. J., Macdonald, V. I. & Van Roodselaar, A. (2010) Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia (p. 63). Fisheries and Oceans Canada= Pêches et océans Canada.

Maidanou, M., Koulouri, P., Arvanitidis, C., Koutsoubas, D. & Dounas, C. (2017) Macrobenthic assemblage structure associated with a Caulerpa prolifera meadow in the eastern Mediterranean Sea (Elounda Bay, Crete Island). Regional Studies in Marine Science, 14, 1–14.

Maidanou, M., Koulouri, P., Karachle, P. K., Arvanitidis, C., Koutsoubas, D. & Dounas, C. (2021) Trophic diversity of a fish community associated with a Caulerpa prolifera (Forsskål) meadow in a shallow semi-enclosed embayment. Journal of Marine Science and Engineering, 9 (2), 165.

Manokaran, S., Joydas, T. V., Qurban, M. A., Cheruvathur, L. L., Kariyathil, T. J., Basali, A. U., ... & Al-Suwailem, A. (2021) Baseline patterns of structural and functional diversity of benthic amphipods in the western Arabian Gulf. Marine Pollution Bulletin, 164, 112054.

Marín-Guirao, L., Cesar, A., Marín, A., Lloret, J. & Vita, R. (2005) Establishing the ecological quality status of soft-bottom mining-impacted coastal water bodies in the scope of the Water Framework Directive. Marine Pollution Bulletin, 50 (4), 374–387.

Marques, J. C. & Bellan-Santini, D. (1993) Biodiversity in the ecosystem of the Portuguese continental shelf: distributional ecology and the role of benthic amphipods. Marine Biology, 115, 555–564.

Marriner, N., Morhange, C., Kaniewski, D., & Carayon, N. (2014) Ancient harbour infrastructure in the Levant: tracking the birth and rise of new forms of anthropogenic pressure. Scientific Reports, 4 (1), 1–11.

Martínez, J., & Adarraga, I. (2001) Distribución batimétrica de comunidades macrobentónicas de sustrato blando en la plataforma continental de Guipúzcoa (golfo de Vizcaya). Boletín. Instituto Español de Oceanografía, 17 (1 y 2), 33–48.

Martínez-Laiz, G., Ulman, A., Ros, M. & Marchini, A. (2019) Is recreational boating a potential vector for non-indigenous peracarid crustaceans in the Mediterranean Sea? A combined biological and social approach. Marine Pollution Bulletin, 140, 403–415.

Meyer, J., Nehmer, P., Moll, A. & Kröncke, I. (2018) Shifting south-eastern North Sea macrofauna community structure since 1986: a response to de-eutrophication and regionally decreasing food supply? Estuarine, Coastal and Shelf Science, 213, 115–127.

Millar, R. H. (1961). Scottish oyster investigations, 1946-1958.

Miloslavich, P., Díaz, J. M., Klein, E., Alvarado, J. J., Díaz, C., Gobin, J., ... & Ortiz, M. (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PloS one, 5 (8), e11916.

Misic, C., Gaozza, L., Petrillo, M. & Harriague, A. C. (2016) The allochthonous material input in the trophodynamic system of the shelf sediments of the Gulf of Tigullio (Ligurian Sea, NW Mediterranean). Marine Environmental Research, 120, 9–19.

Momtazi, F, & Maghsoudlou, A. (2022). Response of marine amphipods to sediment variables (Chabahar Bay-Iran): A step toward localizing amphipod-based bioindices. Marine Environmental Research, 178, 105648.

Moore, P. G. & Cameron, K. S. (1999) A note on a hitherto unreported association between Photis longicaudata (Crustacea: Amphipoda) and Cerianthus lloydii (Anthozoa: Hexacorallia). Journal of the Marine Biological Association of the United Kingdom, 79 (2), 369– 370.

Moreira, J., Gestoso, L. & Troncoso, J. S. (2008) Diversity and temporal variation of peracarid fauna (Crustacea: Peracarida) in the shallow subtidal of a sandy beach: Playa América (Galicia, NW Spain). Marine Ecology, 29, 12–18.

Mülayim, A., Balkis, H. & Sezgin, M. (2015 a) Benthic amphipod (Crustacea) fauna of the Bandirma and Erdek Gulfs and some environmental factors affecting their distribution. Acta Adriatica, 56 (2), 171–188.

Mülayim, A., Arisal, S. B. & Balkis, H. (2015 b) Distribution, diversity and some ecological characteristics of benthic amphipods in the Kapidağ Peninsula (Marmara Sea, Turkey). Oceanological and Hydrobiological Studies, 44 (1), 28-37.

Mülayim, A. (2021) Soft-bottom crustacean fauna from the Turkish coast of the Black and Marmara seas with new records. Oceanological and Hydrobiological Studies, 50 (1), 60–76.

Myers, A. A. (1970) Taxonomic Studies on the Genus Grandidierella Coutière (Crustacea: Amphipoda), with a Description of G. Dentimera, sp. nov. Bulletin of Marine Science, 20 (1), 135–147.

Myers, A. A. (1983) A new species of Cheiriphotis Walker from the Mediterranean Sea (Amphipoda: Iseidae). Bollettino Museo Civico Storia Naturale Verona, 10, 541–542.

Myers, A. A. (2009) Aoridae. Zootaxa, 2260 (1), 220–278.

Navarro-Barranco, C., Tierno-de-Figueroa, J. M., Guerra-García, J. M., Sánchez-Tocino, L. & García-Gómez, J. C. (2013) Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: Comparison between marine caves and open habitats. Journal of Sea Research, 78, 1–7.

Navarro-Barranco, C., McNeill, C. L., Widdicombe, C. E., Guerra-García, J. M. & Widdicombe, S. (2017) Long-term dynamics in a soft-bottom amphipod community and the influence of the pelagic environment. Marine Environmental Research, 129, 133–146.

Navarro-Barranco, C., Ros, M., de Figueroa, J. M. T. & Guerra-García, J. M. (2020) Marine crustaceans as bioindicators: Amphipods as case study. Fisheries and Aquaculture, 9, 435–463.

N'DA, K. (1992) Regime alimentaire du rouget de roche Mullus surmuletus (Mullidae) dans le nord du golfe de Gascogne. Cybium (Paris), 16(2), 159–167.

Niccolai, I., Aliani, S., De Ranieri, S., Abbiati, M., Dell'Amico, F. & Morri, C. (1993) Benthos dei mari toscani. II: isola D'Elba-Montecristo (crociera Enea 1986 anno 1993). In Arcipelago Toscano. Studio Oceanografico, Sedimentologico, Geochimico e Biologico (pp. 291–315).

Nicolaisen, W. & Kanneworff, E. (1969) On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindström and Bathyporeia sarsi Watkin. Ophelia, 6 (1), 231–250.

Nickell, T. D., Cromey, C. J., Borja, Á. & Black, K. D. (2009) The benthic impacts of a large cod farm— Are there indicators for environmental sustainability? Aquaculture, 295 (3-4), 226–237.

Nikitik, C. C. & Robinson, A. W. (2003) Patterns in benthic populations in the Milford Haven waterway following the ‘Sea Empress’ oil spill with special reference to amphipods. Marine pollution bulletin, 46 (9), 1125–1141.

Occhipinti-Ambrogi, A., Ambrogi, R. & Fontana, P. (1988) Comunità bentoniche nella zona del canale di San Pietro (Sardegna sud-occidentale). Thalassia Salentina, 18, 299–313.

Oliva-Rivera, J. J. & Maiza, X. (1998) Anfípodos. Enciclopedia de Quintana Roo, 1, 148–169.

Ortiz, M. & Lalana, R. (1996) Los anfípodos de la primera expedición conjunta Cuba-USA, a bordo del B/I Ulises, a las aguas del Archipielago Sabana-Camagüey, Cuba en 1994. Anales del Instituto de Biología. Serie Zoología, 67 (1), 89–101.

Ortiz, M. & Lemaitre, R. (1997) Seven new amphipods (Crustacea: Peracarida: Gammaridea) from the Caribbean coast of South America. Boletín de Investigaciones Marinas y Costeras- INVEMAR, 26 (1), 71–104.

Ortiz, M., Riera Elena, R. & Ramos, E. (2005) Dos nuevos registros de gammáridos (Crustacea, Amphipoda) para las Islas Canarias. Revista de la Academia Canaria de Ciencias, XVII (Num. 4), 9–13.

Ortiz, M. & Lalana, R. (2010) Distribución de los anfípodos (Crustacea, Malacostraca, Peracarida) de los subórdenes Gammaridea, Caprellidea e Hyperiidea, presentes en el archipiélago cubano. Revista de Investigaciones Marinas, 31 (2), 75–90.

Paiva, P. C. D. & Machado Cunha da Silva, J. R. (1998) Macrobenthic invertebrates as food for a penaeid shrimp pond farm in Brazil. Revista de Biología Tropical, 46 (2), 427–430.

Parker, J. G. (1984) The distribution of the subtidal Amphipoda in Belfast Lough in relation to sediment types. Ophelia, 23 (2), 119–140.

Passarelli, C., Olivier, F., Paterson, D. M., & Hubas, C. (2012) Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Marine Ecology Progress Series, 465, 85–97.

Paz-Rios, C. E. & Ardisson, P. L. (2013) Benthic amphipods (Amphipoda: Gammaridea and Corophiidea) from the Mexican southeast sector of the Gulf of Mexico: checklist, new records and zoogeographic comments. Zootaxa, 3635 (2), 137–173.

Pearson, T. H. & Black, K. D. (2000) The environmental impacts of marine fish cage culture.

Penas, E. & Gonzalez, G. (1983) Relationships between benthic infauna and environmental factors in three beaches of the Ria de Arosa embayment (Spain) using canonical correlation analysis. Journal of Experimental Marine Biology and Ecology, 68 (3), 245–256.

Pérès, J. M. & Picard, J. (1964) Nouveau manuel de bionomie benthique de la mer Méditerranée. Station Marine d'Endoume.

Pérez‐Domingo, S., Castellanos, C. & Junoy, J. (2008) The sandy beach macrofauna of Gulf of Gabès (Tunisia). Marine Ecology, 29, 51–59.

Plicanti, A., Iaciofano, D., Bertocci, I. & Lo Brutto, S. (2017) The amphipod assemblages of Sabellaria alveolata reefs from the NW coast of Portugal: An account of the present knowledge, new records, and some biogeographic considerations. Marine Biodiversity, 47, 521–534.

Polinov, S. (2023) Increased Anthropogenic Activity in the Mediterranean Since the Opening of the Suez Canal. In The Suez Canal: Past Lessons and Future Challenges (pp. 217-229). Cham: Springer International Publishing.

Ragkousis, M., Zenetos, A., Souissi, J. B., Hoffman, R., Ghanem, R., Taşkin, E., ... & Karachle, P. K. (2023) Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species. BioInvasions Records, 12 (2), 339–369.

Reid, D. M. (1941) The amphipod fauna of Oldany Harbour, Sutherland. The Journal of Animal Ecology, 296-305.

Reis Filho, R. W., Tavares, G. H., da Silva Lima, Í., Ramos, M. B. & Furley, T. H. (2018) A tropical amphipod (Grandidierella bonnieroides) tested with granulometric fractions and TIE materials for optimization of toxicity evaluations. Thalassas: An International Journal of Marine Sciences, 34 (1), 191–198.

Ren, X., (2006) Fauna sinica, invertebrate. Vol. 41. In: Crustacea: Amphipoda: Gammaridea (I), vol. 41. Science Press, Beijing.

Ritter, C. J. & Bourne, D. G. (2024) Marine amphipods as integral members of global ocean ecosystems. Journal of Experimental Marine Biology and Ecology, 572, 151985.

Robertson, M. R., Hall, S. J. & Eleftheriou, A. (1989) Environmental correlates with amphipod distribution in a Scottish sea loch. Cahiers de Biologie Marine, 30, 243–258.

Rousou, M., Plaiti, W., Lowry, J., Charalambous, S. & Chintiroglou, C. C. (2020) Amphipoda species (Suborders: Amphilochidea and Senticaudata) from Vasiliko Bay, Cyprus: New records, information on their biogeography and an annotated checklist from the coasts of Cyprus. Zootaxa, 4896 (3), 373–408.

Saenz-Arias, P., Navarro-Barranco, C., Moreira, J., Reyes-Martínez, M. J. & Guerra-García, J. M. (2024) Light traps as an exploratory tool in light pollution studies: Assessment of vulnerable species and their migratory patterns. Ocean & Coastal Management, 255, 107207.

Sampaio, L., Mamede, R., Ricardo, F., Magalhaes, L., Rocha, H., Martins, R., ... & Quintino, V. (2016) Soft-sediment crustacean diversity and distribution along the Portuguese continental shelf. Journal of Marine Systems, 163, 43–60.

Sánchez-Jerez, P., Cebrián, C. B. & Esplá, A. A. R. (1999) Comparison of the epifauna spatial distribution in Posidonia oceanica, Cymodocea nodosa and unvegetated bottoms: importance of meadow edges. Acta Oecologica, 20 (4), 391–405.

Sánchez-Moyano, J. E. & García-Asencio, I. (2010) Crustacean assemblages in a polluted estuary from South-Western Spain. Marine Pollution Bulletin, 60 (10), 1890–1897.

Santos, S. L. & Simon, J. L. (1980) Response of soft-bottom benthos to annual catastrophic disturbance in a south Florida estuary. Marine Ecology Progress Series, 3 (4), 347–355.

San Vicente, C. & Sorbe, J. C. (1999) Spatio-temporal structure of the suprabenthic community from Creixell beach (western Mediterranean). Acta oecologica, 20 (4), 377-389.

Sars, G.O. (1890 –95). An account of the Crustacea of Norway, with short descriptions and figures of all the species. Volume 1, Amphipoda. Christiania: Alb. Cammermeyer. 711 p, 248 plates.

Satheeshkumar, P. (2011) Intertidal Amphipods (Crustacea: Amphipoda) from Pondicherry Mangroves, Southeast Coast of India. Journal of Natural Sciences Research, 1, 34–38.

Schneider, A., Tanhua, T., Körtzinger, A. & Wallace, D. W. (2010) High anthropogenic carbon content in the eastern Mediterranean. Journal of Geophysical Research: Oceans, 115(C 12).

Schückel, S., Sell A., Kröncke, I. & Reiss, H. (2011) Diet composition and resource partitioning in two small flatfish species in the German Bight. Journal of Sea Research 66 (3), 195–204.

Scipione, M. B. (2013). Do studies of functional groups give more insight to amphipod biodiversity?. Crustaceana, 86 (7-8), 955–1006.

Scipione, M. B., Lattanzi, L., Tomassetti, P., Gusso, C. C., Maggiore, F., Mariniello, L., ... & Taramelli, E. (2005) Biodiversity and zonation patterns of crustacean peracarids and decapods of coastal soft-bottom assemblages (Central Tyrrhenian Sea, Italy). Vie et Milieu/Life & Environment, 143–161.

Servello, G., Andaloro, F., Azzurro, E., Castriota, L., Catra, M., Chiarore, A., Crocetta, F., D’Alessandro, M., Denitto, F., Froglia, C., Gravili, C., Langer, M., Lo Brutto, S., Mastrototaro, F., Petrocelli, A., Pipitone, C., Piraino, S., Relini, G., Serio, D., Xentidis, N. & Zenetos, A. (2019) Marine alien species in Italy: a contribution to the implementation of Descriptor D2 of the Marine Strategy Framework Directive. Mediterranean Marine Science, 20 (1), 1–48.

http://dx.doi.org/10.12681/mms.18711

Sezgin, M. & Katağan, T. (2007) An account of our knowledge of the amphipod fauna of the Black Sea. Crustaceana, 80 (1), 1–11.

Sezgin, M., Kirkim, F., Dagli, E., Dogan, A., Unluoglu, A., Katagan, T. & Benli, H. A. (2010) Sublittoral soft-bottom zoobenthic communities and diversity of southern coast of the Black Sea (Turkey). Rapports commission internationale pour l'exploration scientifique de la Mer Méditerranée, 39, 662.

Shi, Y., Zhang, G., Zhang, G., Wen, Y., Guo, Y., Peng, L., ... & Sun, J. (2022) Species and functional diversity of marine macrobenthic community and benthic habitat quality assessment in semi-enclosed waters upon recovering from eutrophication, Bohai Bay, China. Marine Pollution Bulletin, 181, 113918.

Siebert, T. & Branch, G. M. (2007) Influences of biological interactions on community structure within seagrass beds and sandprawn-dominated sandflats. Journal of Experimental Marine Biology and Ecology, 340 (1), 11–24.

Sorbe, J. C. (1982) Observaciones preliminares del suprabentos en un transecto batimétrico de la plataforma continental aquitana (suroeste de Francia). Oecologia aquatica, 6 (6), 9–17.

Sorbe, J. C., Basin, A. & Galil, B. S. (2002) Contribution to the knowledge of the Amphipoda (Crustacea) of the Mediterranean coast of Israel. Israel Journal of Zoology, 48 (2), 87–110.

Stearns, D. E. & Dardeau, M. R. (1990) Nocturnal and tidal vertical migrations of" benthic" crustaceans in an estuarine system with diurnal tides. Gulf of Mexico Science, 11 (2), 1.

Steger, J., Bogi, C., Lubinevsky, H., Galil, B. S., Zuschin, M. & Albano, P. G. (2024) Ecological baselines in the Eastern Mediterranean Sea shifted long before the availability of observational time series. Global Change Biology, 30 (4), e17272.

Stephensen, K. (1933) Fresh-and brackish-water Amphipoda from Bonaire, Curaçao und Aruba.(Zoologische Ergebnisse einer Reise nach Bonaire, Curaçao, und Aruba im Jahre 1930). Zoologische Jahrbücher (Syst.), 64, 414–436.

Stoner, A. W. (1980) Perception and choice of substratum by epifaunal amphipods associated with seagrasses. Marine Ecology Progress Series, 3(10).

Stoner, A. W. & Acevedo, C. (1990) The macroinfaunal community of a tropical estuarine lagoon. Estuaries, 13, 174–181.

Sweatman, J. L., Layman, C. A. & Fourqurean, J. W. (2017) Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Marine environmental research, 126, 95–108.

Tanaka, M. O. & Leite, F. P. (2003) Spatial scaling in the distribution of macrofauna associated with Sargassum stenophyllum (Mertens) Martius: analyses of faunal groups, gammarid life habits, and assemblage structure. Journal of experimental marine biology and ecology, 293 (1), 1–22.

Tănase, M. C., filimon, A., Dumitrache, C. & Abaza, V. (2022) The macrozoobenthic species of the infralittoral and circalittoral zone from the Romanian Black Sea Coast–A qualitative and quantitative assessment. Annals of the Academy of Romanian Scientists. Series on Biological Sciences, (2).

Targusi, M., La Porta, B., Lattanzi, L., La Valle, P., Loia, M., Paganelli, D., ... & Nicoletti, L. (2019) Beach nourishment using sediments from relict sand deposit: Effects on subtidal macrobenthic communities in the Central Adriatic Sea (Eastern Mediterranean Sea-Italy). Marine environmental research, 144, 186–193.

Thomas, J. D. (1976) A survey of gammarid amphipods of the Barataria Bay, Louisiana region.

Toulmond, A. (1964). Les Amphipodes des faciès sableux intertidaux de Roscoff. Aperçus faunistiques et écologiques. Cahiers de Biologie Marine, 5 (3), 319–342.

Vázquez-Luis, M., Sanchez-Jerez, P. & Bayle-Sempere, J. T. (2009) Comparison between amphipod assemblages associated with Caulerpa racemosa var. cylindracea and those of other Mediterranean habitats on soft substrate. Estuarine, Coastal and Shelf Science, 84 (2), 161–170.

Viéitez, J. M. & Baz, A. (1988) Comunidades bentónicas del sustrato blando intermareal de la playa de Lapamán (Rïa de Pontevedra, Galicia). Cah. Biol. Mar, 29, 261–276.

Villiers, L. (1982) The feeding of juvenile goby Deltentosteus quadrimaculatus (Pisces, Gobiidae). Sarsia, 67 (3), 157–162.

Virnstein, R. W. & Curran, M. C. (1986) Colonization of artificial seagrass versus time and distance from source. Marine Ecology Progress Series, 29, 279–288.

Watkin, E. E. (1939 a) The swimming and burrowing habits of some species of the amphipod genus Bathyporeia. Journal of the Marine Biological Association of the United Kingdom, 23 (2), 457– 465.

Watkin, E. E. (1939 b) The pelagic phase in the life history of the amphipod genus Bathyporeia. Journal of the Marine Biological Association of the United Kingdom, 23 (2), 467–481.

Warwick, R. M. & Davies, J. R. (1977) The distribution of sublittoral macrofauna communities in the Bristol Channel in relation to the substrate. Estuarine and Coastal Marine Science, 5 (2), 267– 288.

Winfield, I., Escobar-Briones, E. L. V. A. & Álvarez, F. (2023) Crustáceos peracáridos asociados a praderas de Ruppia maritima (Ruppiaceae) en la laguna de Alvarado, México. Anales del Instituto de Biología, UNAM, Serie Zoología, Vol. 38 -75, 72 (1), 29–41.

Wijnhoven, S., Zwiep, K. L. & Hummel, H. (2018) First description of epizoic ciliates (Sessilida Stein, 1933) on Bathyporeia Lindström, 1855 (Peracarida, Amphipoda) and infestation patterns in brackish and marine waters. Crustaceana, 91 (2), 133–152.

Wolff, W. J. (1973) The estuary as a habitat an analysis of data on the soft-bottom Macrofauna of the Estuarine area of the rivers rhine, Meuse, and Scheldt. Zoologische verhandelingen, 126 (1), 1– 242.

Wynberg, R. P. & Branch, G. M. (1997) Trampling associated with bait-collection for sandprawns Callianassa kraussi Stebbing: effects on the biota of an intertidal sandflat. Environmental Conservation, 24 (2), 139–148.

Zakhama-Sraieb, R., Sghaier, Y. R. & Charfi-Cheikhrouha, F. (2009) Amphipod biodiversity of the Tunisian coasts: update and distributional ecology. Marine Biodiversity Records, 2, e155.

Zakhama-Sraieb, R., Mnasser, I., Zribi, I. & Charfi-Cheikhrouha, F. (2017) Update of checklist of marine Amphipoda in Tunisia from 2009 to April 2017. Biodiversity Journal, 8 (2), 493–496.

Zimmerman, R., Gibson, R. & Harrington, J. (1979) Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Marine Biology, 54, 41–47.

Supplementary material

SIMPER analyses

Data type: pdf

Link: https://www.biotaxa.org/em/article/view/86645/81352

Kingdom

Animalia

Phylum

Arthropoda

Class

Malacostraca

Order

Amphipoda

Family

Urothoidae

Genus

Urothoe

Loc

Urothoe grimaldii Chevreux, 1895

Iaciofano, Davide, Mancini, Emanuele, Lubinevsky, Hadas & Brutto, Sabrina Lo 2024
2024
Loc

Urothoe grimaldii

Chevreux 1895
1895
Loc

Urothoe grimaldii

Chevreux 1895
1895
Loc

Caulerpa cylindracea

Sonder 1845
1845
Loc

Amphioxus

Yarrell 1836
1836
Loc

Tellina fabula

Gmelin 1791
1791
Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF