Zodarion styliferum ( Simon, 1870 )
publication ID |
https://doi.org/10.11646/zootaxa.5624.1.1 |
publication LSID |
lsid:zoobank.org:pub:95ACB59E-861D-4EEE-9386-988CBE127BA8 |
persistent identifier |
https://treatment.plazi.org/id/03EE8794-FE13-FF81-FF6C-7F54FA117D2C |
treatment provided by |
Plazi |
scientific name |
Zodarion styliferum ( Simon, 1870 ) |
status |
|
Zodarion styliferum ( Simon, 1870) View in CoL
Figs 22E–F View FIGURE 22 , 23E–F View FIGURE 23 , 35G–I View FIGURE 35 , 37C–E View FIGURE 37 , 40I–L View FIGURE 40 , 41I View FIGURE 41 , 42C View FIGURE 42 , 43–44 View FIGURE 43 View FIGURE 44
Enyo stylifera Simon 1870: 102 (♂). Zodarion brevicephalus Wunderlich, 2023: 48 View in CoL , figs 89–92 (♂ ♀). Syn. nov. Enyo stylifera — Simon 1873: 66, pl. 2, fig. 8 (♂). Zodarion styliferum View in CoL — Simon 1893: 432, fig.408 (♂).— Denis 1937: 32, pl. 6, figs 49–51 (♂ ♀, in part).— Bosmans 1994: 118,
figs 1–3, 81–82 (♂ ♀, in part). — Crespo et al. 2009: 474, fig. 15 (♀).— Pekár et al. 2011: 30 (♂ ♀).—Gaymard et al. 2018:
18, figs 2A–F, 3A–D (♂ ♀).— Gaymard & Lecigne 2018: 21, figs 15A–L (♂ ♀).— Wunderlich 2022: 33, figs 64–65 (♂).—
Wunderlich 2023: 47, fig. 87 (♂). Zodarion maderianum — Kulczyński 1899: 361, pl. 6, fig. 19 (♀).— Kulczyński 1905: 440, pl. 12, figs 1–2 (♂).
Type material examined. Lectotype PORTUGAL: 1♂, labeled as “Hisp. Port”, MNHN-AR1511 . Paralectotypes 3♂, 11♀, 2 juv., same collection data as for lectotype . Holotype ( Zodarion brevicephalus ) PORTUGAL: ♂, Fonte da Tareja , São Brás de Alportel, V.2023, J. Wunderlich leg., ZMH-A0020724 . Paratype ( Zodarion brevicephalus ) 1♀, same collection data as for holotype, ZMH-A0020725 .
Other material examined. PORTUGAL: 1♂, Funchal, Madeira, Hotel grounds, 15.IV.1973, J. Murphy & F. Murphy leg. , MMUM-759, G7572.761; 2♂, idem, 21.IV.1973, J. Murphy & F. Murphy leg. , MMUM-829, G7572.827; 2 juv., Ribeira das Cales, Funchal , Madeira, 1200 m a.s.l., 17.IV.1973, J. Murphy & F. Murphy leg. ,
MMUM-778, G7572.779; 1♂, rocks at Funchal, Madeira , 0 m a.s.l., 26.IV.1973, J. Murphy & F. Murphy leg., MMUM-907, G7572.896 ; 1♂, Porto Moniz, Porto Moniz, Madeira , 25. V.2006, S. Pekár & M. Hrušková leg., CMU ; 4♂, 6♀, 1 juv., idem, 28. V.2006, CMU ; 1♀, road to Peralva, Tavira 250 m a.s.l., 15.IV.1982, J. Murphy & F. Murphy leg., MMUM-10366, G7572.9533 ; 4♂, 1♀, São Martinho das Amoreiras, Odemira , 30. V.2018, S. Pekár & D. Ortiz leg., CMU ; 2♀, Manta Rota, Vila Real de Santo António , 3.X.2003, S. Pekár leg., CMU ; 6♂, 7♀, 5 juv., Algodor (Parque Natural do Vale do Guadiana), Mértola , 37.743º N, 7.792º W, 3.XII.2021, D. Ortiz leg., CMU. SPAIN GoogleMaps : 7♂, Cazorla, Jaén , V.1979, J. Murphy & F. Murphy leg., MMUM-18763, G7572.12840 ; 2♂, idem, 1000 m a.s.l., V.1979, J. Murphy & F. Murphy leg., MMUM-4342, G7572.5137 ; 1♂, Jaén, Jaén , 17. VI.2018, D. Ortiz leg., CMU ; 1♀, Sant Salvador, Tarragona , 10. VI.1999, J. Dolanský leg., CMU ; 73♂, 27♀, 5 juv., Cabañeros National Park, Ciudad Real , 4. VI.2002, J. C. Barriga leg., CMU ; 6♂, 2♀, Toledo, Toledo , 18. V.2006, S. Pekár leg., CMU ; 12♂, 1♀, 1 juv., idem, 15. VI.2006, W. Nentwig leg., CMU ; 3♂, 1♀, Santa Quiteria, Ciudad Real , 9. VI.2018, D. Ortiz leg., CMU ; 3♂, 7♀, 4 juv., Celle del Moro, Granada , 25. V.2012, S. Pekár & S. Korenko leg., CMU ; 1 juv., Embalse de Rules, Granada , 27. V.2012, S. Pekár leg., CMU ; 25♂, 21♀, 1 juv., Granada, Granada , 29. V.2012, S. Pekár & S. Korenko leg., CMU ; 1♀, Vélez Benaudalla, Granada , 27. V.2012, S. Pekár leg., CMU ; 2♂, 1♀, 3 juv., Vereda de la Estrella , 27. V.2012, S. Pekár & S. Korenko leg., CMU ; 1♂, 5♀, Ermita Nueva, Jaén , 29. V.2012, S. Pekár & S. Korenko leg., CMU ; 2♀, 3 juv., Almería, Almería , 29. V.2012, S. Korenko leg., CMU ; 2♂, idem, 8. VI.2018, D. Ortiz leg., CMU ; 2♂, 2♀, Langa de Duero, Soria , 6. VI.2018, D. Ortiz leg., CMU ; 3♂, 1 juv., Arévalo, Ávila , 7. VI.2018, D. Ortiz leg., CMU ; 2♂, 4♀, 2 juv., idem, 7. VI.2018, D. Ortiz leg., CMU ; 2 juv., Revenga, Segovia , 7. VI.2018, D. Ortiz leg., CMU ; 2♂, 2♀, 1 juv., Plasencia, Cáceres , 8. VI.2018, D. Ortiz leg., CMU ; 1 juv., Mozárbez, Salamanca , 8. VI.2018, D. Ortiz leg., CMU ; 3♂, 1♀, Navalmoral de la Mata, Cáceras , 8. VI.2018, D. Ortiz leg., CMU ; 1♂, Trujillo, Cáceras , 8. VI.2018, D. Ortiz leg., CMU ; 3♀, Badajoz, Mérida , 9. VI.2018, D. Ortiz leg., CMU ; 2♂, 2♀, Argamasilla de Alba, Ciudad Real , 10. VI.2018, D. Ortiz leg., CMU ; 3♂, 2♀, Munera, Albacete , 10. VI.2018, D. Ortiz leg., CMU ; 4♂, Alcaraz, Albacete , 10. VI.2018, D. Ortiz leg., CMU ; 1♂, 2♀, Albacete , 10. VI.2018, D. Ortiz leg., CMU ; 6♂, Urda, Toledo , 10. VI.2018, D. Ortiz leg., CMU ; 2 juv., Requena , València, 11. VI.2018, D. Ortiz leg., CMU ; 1♂, 2♀, Colliguilla, Cuenca , 11. VI.2018, D. Ortiz leg., CMU ; 8♂, Alcañiz, Teruel , 15. VI.2018, D. Ortiz leg., CMU ; 4♂, Almansa, Albacete , 16. VI.2018, D. Ortiz leg., CMU ; 2♀, Hellín, Albacete , 17. VI.2018, D. Ortiz leg., CMU ; 2♂, Saierra de las Nieves National Park , Málaga, CMU ; 3♂, 2♀, 7 juv., Torrecera, Cádiz , 36.607°N, 5.941°W, 16.XI.2022, S. Pekár leg., CMU GoogleMaps ; 3♂, 3♀, La Palma del Condado, Huelva , 37.39°N, 6.553°W, 19.XI.2022, S. Pekár leg., CMU GoogleMaps .
Diagnosis: Zodarion styliferum can be distinguished from Z. extraneum by (1) the coloration of femora III (entirely black in Z. styliferum vs. yellowish with or without greyish tip in Z. extraneum , cf. Fig. 42C View FIGURE 42 and Fig. 42A–B View FIGURE 42 ); (2) the position of baso-lateral edge of the median apophysis (situated at 8–9 o’clock in Z. styliferum vs. at 6–7 o’clock in Z. extraneum , cf. Fig. 35H View FIGURE 35 and Fig. 35B, 35E View FIGURE 35 ); and (3) the widest part of the median apophysis two times wider than basal part (vs. with the same width, cf. Fig. 35H View FIGURE 35 and Fig. 35B, 35E View FIGURE 35 ). Zodarion styliferum can be distinguished from Z. jozefienae by a shorter distal tooth of the median apophysis ( Fig. 35H View FIGURE 35 vs. Fig. 35K View FIGURE 35 ), and discernible copulatory openings ( Fig. 41I View FIGURE 41 vs. Fig. 41F View FIGURE 41 ), and from Z. rudyi by the absence of a medio-lateral lobe of the tibial apophysis ( Fig. 35I View FIGURE 35 vs. Fig. 35O View FIGURE 35 ), and a smaller size of the trapezoid wings of the epigyne ( Fig. 41I View FIGURE 41 vs. Fig. 41G View FIGURE 41 ). Additionally, they can be further distinguished from other members of the styliferum group by their terminally hooked tibial apophysis ( Fig. 35I View FIGURE 35 vs. Fig. 34C, 34F, 34I, 34L, 34O, 34R View FIGURE 34 ), and by a bell-shaped epigynal plate which narrowed medially ( Fig. 41I View FIGURE 41 vs. Figs 17K, 17L View FIGURE 17 , 38F–G View FIGURE 38 , 41A–C, 41E, 41H View FIGURE 41 ).
Description
Male (specimen from Algodor). Total length 2.84 mm, carapace 1.26 mm long, 0.93 mm wide. Prosoma ( Fig. 22E–F View FIGURE 22 ): Carapace, clypeus, chelicerae dark brown to black; mouthparts brownish to black, sternum reddish-brown. Eyes: AME 0.08, ALE=PME 0.07, PLE 0.06, AME – AME 0.05, ALE – ALE 0.1, PME – PME 0.27, PLE – PLE 0.14. Abdomen ( Fig. 22E–F View FIGURE 22 ): dorsum black, accompanied by a series of connected, whitish mark situated behind the spinnerets, venter whitish to yellowish in the center and greyish on the area around epiandrous plate and above the spinnerets; spinnerets basally light grey and apically dirty yellow. Legs ( Fig. 42C View FIGURE 42 ): Cx I yellowish, Cx II–IV pale; Fe I–IV dark brown to black; all other leg segments yellowish. Leg lengths: I 2.57 (0.63, 0.36, 0.57, 0.61, 0.4), II 2.67 (0.59, 0.34, 0.66, 0.6, 0.48), III 2.73 (0.78, 0.35, 0.5, 0.59, 0.51), IV 4.19 (1.35, 0.4, 0.79, 1.12, 0.53). Palp ( Figs 35G–I View FIGURE 35 , 37C–E View FIGURE 37 ): same as that for Z. extraneum but the baso-prolateral edge of the median apophysis at 8 or 9 o’clock.
Female (specimen from Algodor). Total length 3.01 mm, carapace 1.33 mm long, 0.96 mm wide. Prosoma and abdomen ( Fig. 23E–F View FIGURE 23 ): same as those in male. Eyes: AME 0.08, ALE=PME=PLE 0.07, AME – AME 0.05, ALE – ALE 0.26, PME – PME 0.28, PLE – PLE 0.15. Legs ( Fig. 42C View FIGURE 42 ): same as those in male. Leg lengths: I 2.35 (0.57, 0.34, 0.52, 0.56, 0.36), II 2.7 (0.48, 0.34, 0.55, 0.81, 0.52), III 2.75 (0.77, 0.33, 0.54, 0.6, 0.51), IV 4.14 (1.29, 0.42, 0.81, 1.1, 0.52). Epigyne ( Figs 40I–L View FIGURE 40 , 41I View FIGURE 41 ): Epigynal plate bell-shaped, anteriorly rounded, edges running parallel. Epigynal plate posteriorly diverging, accompanied by a pair of trapezoid wings. Copulatory opening(s) and pit(s) are not visible, but they might potentially be located near the wings. Vulva more or less intricated; the apical edge of the ducts strongly curved outward.
Variation: Total length: males 2.79–3.28 (n=25), females 3–4.52 (n=25).
Molecular data:
COI mitochondrial barcodes (Genbank accession): MT370173, MT370177, MT370179, MT370180, MT370181, MT370182, MT370185, MT370186, MT370187, MT370195, MT370204, MT370207, MT370213, MT370214, MT370217, MT370220, MT370222, MT370223, MT370233, MT370237, MT370238, MT370247, MT370248, MT370254, MT370260, MT370265, MT370266, MT370267, MT370268, MT370274, MT370276 .
Maximum intraspecific COI divergence (n=31): 10 %. Minimum interspecific divergence (to Z. rudyi ): 5.0%. Consensus COI distance to the closest species (to Z. rudyi ): 0.7%.
Comments: See comments under the section of Z. extraneum for a summary on the shared research history of both species and how they differ. Zodarion brevicephalus Wunderlich, 2023 ( Figs 43–44 View FIGURE 43 View FIGURE 44 ) possesses the same diagnostic features as Z. styliferum and an overlapped distribution. Therefore, we consider Z. brevicephalus as a junior synonym of Z. styliferum .
On the other hand, specimens of Z. styliferum that could not complete their last molt have lighter proximal parts of Fe III and abdomen.
Distribution: France, Spain, Madeira and Portugal.
Genetic distances and phylogenetics
We have analyzed 126 COI sequences from 19 Iberian Zodarion species (Supplementary information). Pairwise maximum intra-specific distances were consistently smaller than the minimum inter-specific distances ( Fig. 45 View FIGURE 45 ; Supplementary information).However, Z. styliferum and Z. extraneum , among the most widespread Iberian Zodarion species and from which we had the highest number of samples, displayed intra-specific variations as large as typical inter-specific distances. On the other hand, minimum inter-specific distances between consensus sequences were significantly lower than the corresponding inter-specific pairwise distances. The consensus sequences were similar to pairwise intra-specific distances, and poorly informative on phylogenetic relationships, with 17 out of 18 species being “closest” to Z. styliferum . Given that Z. styliferum and Z. extraneum were the taxa with the highest number of samples available, and that their cohesiveness as single species has been recently supported through genomic data (Ortiz et al. 2021), our results suggest that consensus sequences can be highly inefficient for diagnosing Zodarion species. This conclusion aligns well with studies that challenge the use of consensus sequences as the single source of evidence for species discovery and diagnosis (e.g. Meier et al. 2022; Zamani et al. 2022).
On the other hand, most species were recovered as monophyletic groups in the COI gene tree, although with variable branch support ( Fig. 46 View FIGURE 46 ). The only exception was Z. styliferum , a paraphyletic group due to monophyletic Z. extraneum and Z. rudyi nested inside.
Our results, therefore, show that COI barcodes can be a valuable piece of information for species identification in the Iberian Zodarion . In this respect, pairwise distances and the gene tree seem to be far more informative than consensus sequences.
Finally, the COI tree did not recover the monophyly of either the rubidum or the styliferum species groups ( Fig. 46 View FIGURE 46 ), as the deep branches of the tree suffer from low support values, most likely due to base saturation in the COI gene, which is facilitated by the old evolutionary history of Zodarion (Ortiz et al. 2021) . Such relationships have been estimated with higher reliability using genome-wide information ( Ortiz et al. 2022, 2023a).
Authors’ contributions
Conceptualization, methodology, validation, investigation, data curation, S.S, S.P, and D.O; original draft preparation, S.S, and D.O; writing—review and editing, S.S, S.P, and D.O; project administration and funding acquisition, S.P. All authors have read and approved the manuscript, and given consent for submission and subsequent publication.
V |
Royal British Columbia Museum - Herbarium |
VI |
Mykotektet, National Veterinary Institute |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
|
Genus |
Zodarion styliferum ( Simon, 1870 )
Shafaie, Sepideh, Pekár, Stano & Ortiz, David 2025 |
Enyo stylifera
Wunderlich, J. 2023: 48 |
Bosmans, R. 1994: 118 |
Denis, J. 1937: 32 |
Simon, E. 1893: 432 |
Simon, E. 1873: 66 |
Simon, E. 1870: 102 |