Torrenticola (Torrenticola) vladika Pešić, Zawal & Smit, 2025
publication ID |
https://doi.org/10.37828/em.2025.89.1 |
publication LSID |
lsid:zoobank.org:pub:8131A484-F420-4DEB-AF5D-227BCAAC3F0F |
persistent identifier |
https://treatment.plazi.org/id/03C5F73E-9F3F-4524-0DDE-7A09872BFEE6 |
treatment provided by |
Felipe |
scientific name |
Torrenticola (Torrenticola) vladika Pešić, Zawal & Smit |
status |
sp. nov. |
Torrenticola (Torrenticola) vladika Pešić, Zawal & Smit n. sp.
https://zoobank.org/ urn:lsid:zoobank.org:act:27FD377E-5BF7-4241-A197-29B38B9FEEDD
Figs. 2-3 View Figure 2 View Figure 3
Material examined: Holotype ♂ (barcoded; HYDMN637-24 ), Montenegro, Žabljak, Durmitor Mt., Mlinski potok stream near Cno Lake , 43.14983° N, 19.09009° E, 1466 m asl., 22 Jun. 2018, leg. Zawal & Pešić, dissected and slide mounted (voucher Id: K78_17; RMNH) GoogleMaps . Paratypes: 1♂ (sequenced; HYDMN635-24 ) , same data as the holotype, dissected and slide mounted (voucher Id: K78_15; RMNH) GoogleMaps ; 1♀ (barcoded; HYDMN018-24 ) , Montenegro, Crkvine , inflow of the Bistrica stream, 42.80528° N, 19.446667° E, 14 Jun. 2024 leg. Zawal & Pešić, dissected and slide mounted (voucher Id: K65_18; RMNH) GoogleMaps .
Diagnosis: Morphological: Male medial suture of Cx-II+III short (L 55-70 μm); genital field large, posterior margins of genital flaps with a few short setae only in both sexes; male ejaculatory complex with short proximal and distal arms, proximal chamber large, proximal horns reduced; gnathosoma ventral margin curved, rostrum longer; P-2 and P-3 with well-developed, finger-like, apically serrated, ventrodistal projections. Molecular: this lineage is represented by a unique BIN (BOLD:AGG3818) which differs from T. anomala clade by 16.11% p -distance for COI.
Description. General features — Idiosoma roundish; dorsal shield without a colour pattern (possible lost as a results of the molecular analysis process); area of primary sclerotization of the dorsal plate with two pairs of dorsoglandularia ( Figure 2A View Figure 2 ); gnathosomal bay U-shaped, proximally rounded; Cxgl–4 subapical; postgenital area extended; excretory pore and Vgl–2 away from the line of primary sclerotization, Vgl–2 posterior to excretory pore, Gnathosoma ventral margin curved, gnathosomal rostrum well developed ( Figure 2D View Figure 2 ); P-2 ventral margin nearly straight or slightly concave, P-2 ventrodistal protrusion finger-like, bluntly pointed, apically serrated, P-3 with a finger-like, apically serrated ventrodistal projection, P-4 with a ventral tubercle bearing one long and three shorter setae ( Figures 2C View Figure 2 , 3C View Figure 3 ). Male — Medial suture of Cx-II+III short, suture line of Cx-IV slightly evident; genital field large, subrectangular, wth a few short setae on the posterior margins of the genital flaps; ejaculatory complex with short proximal and distal arms, proximal chamber large, proximal horns reduced ( Figure 2E View Figure 2 ). Female — Genital field large and pentagonal in shape.
Measurements. Male (holotype K78_17; in parentheses measurements of paratype K78_17) — Idiosoma (ventral view: Figure 2B View Figure 2 ) L 794 (791), W 563 (569); dorsal shield ( Figure 2A View Figure 2 ) L 659 (666), W 459 (444), L/W ratio 1.44 (1.5); dorsal plate L 603 (606); shoulder plate L 186 (181), W 72 (72-75), L/W ratio 2.58 (2.51-2.61); frontal plate L 141-147 (138), W 72 (70-72), L/W ratio 1.96-2.04 (1.92- 1.97); shoulder/frontal plate L 1.27-1.32 (1.31). Gnathosomal bay L 141 (147), Cx-I total L 306 (298), Cx-I mL 166 (153), Cx-II+III mL 58 (68); ratio Cx-I L/Cx-II+III mL 5.3 (4.4); Cx-I mL/Cx-II+III mL 2.9 (2.3). Genital field L/W 169 (166)/122 (128), ratio 1.39 (1.30); distance genital field-excretory pore 191 (191), genital field-caudal idiosoma margin 263 (256). Ejaculatory complex L 211 (236).
Gnathosoma vL 296 (292), chelicera L 325 (322); palp total L 330, dL/H: P-1, 34/28 (35/27); P-2, 96/50 (100/56); P-3, 66/45 (69/45); P-4, 112/28 (109/30); P-5, 22/10 (22/11); L ratio P-2/P-4, 0.86 (0.92). dL of I-L-4-6: 98 (105), 118 (121), 120 (107); I-L-6 H 44 (39); dL/H I-L-6 ratio 2.72 (2.74).
Female (paratype K65_18) — Idiosoma (ventral view: Figure 3B View Figure 3 ) L 911, W 762; dorsal shield ( Figure 3A View Figure 3 ) L 806, W 613, L/W ratio; dorsal plate L 738; shoulder plate L 212-216, W 92-94, L/W ratio 2.3; frontal plate L 170-175, W 86-88, L/W ratio 1.98-2.04; shoulder/frontal plate L 1.23-1.25. Gnathosomal bay L 149, Cx-I total L 313, Cx-I mL 163, Cx-II+III mL 50; ratio Cx-I L/Cx-II+III mL 6.3; Cx-I mL/Cx-II+III mL 3.3. Genital field L/W 193/180, ratio 1.07; distance genital field-excretory pore 234, genital field-caudal idiosoma margin 343.
Gnathosoma vL 338, chelicera L 381; palp total L 379, dL/H: P-1, 38/31; P-2, 117/58; P-3, 75/53; P-4, 123/32; P-5, 26/11; L ratio P-2/P-4, 0.95. dL of I-L-4-6: 105, 122, 105; I-L-6 H 38; dL/H I- L-6 ratio 2.79.
Etymology: The species is named after Vladika Rade – Petar II Petrović Njegoš, who was a Prince-Bishop ( vladika ) of Montenegro, as well as philosopher and poet. The name was chosen because the heavily sclerotized shields of this new torrenticolid species reminded the authors of one of Njegoš' most frequently cited verses: " A hard nut is a strange fruit, you won't break it, but you'll break your tooth ", a metaphor symbolizing the resilience and struggle of the Montenegrin peoples. The species name is a noun in apposition.
Species delimitation using DNA barcodes: The final alignment for species delimitation using COI sequence data comprised 669 nucleotide positions (nps) of the 117 Torrenticola specimens listed in Supplementary material and one outgroup, Monatractides madritensis (K. Viets, 1930) from Serbia to root the tree. The NJ tree is presented in Figure 4 View Figure 4 . The COI sequences retrieved from Torrenticola specimens from Montenegro, here described as T. vladika n. sp., form a strongly supported clade (BOLD:AGG3818). In the phylogenetic tree this clade was nested between the clades of the T. brevirostris ( T. brevirostris (Halbert, 1911) + T. soniae Pešić, 2024 from Portugal) and T. anomala ( T. anomala (Koch, 1837) + T. gr. anomala from Corsica) complexes, respectively. The p -distance between the BIN of the new species and its nearest neighbour, BOLD:AFW5336, (which includes sequences of T. elisabethae Pešić, 2024 from Portugal), was estimated at 13.16%, while the p -distance to its morphologically most similar congener, T. anomala (BOLD:ACI0434), was estimated at 16.11%. The mean intraspecific p -distance within the cluster of the new species was 0.2%.
Discussion: With regard to the shape of ejaculatory complex with a large proximal chamber and reduced proximal horns, the new species resembles T. anomala (Koch, 1837) . However, the latter species differs from the new species in having elongated medial suture Cx-II+III, the genital field is reduced in size and by the presence of long genital setae.
Distribution: Montenegro; known from the two streams ( Fig. 5 View Figure 5 ) in northern part of the country.
Acknowledgements
This work was partly supported by the Minister of Science under the “Regional Excellence Initiative” Program for 2024–2027 [RID/SP/0045/2024/01]. We are indebted to Yunus Esen (Bingöl), whose constructive comments improved this work.
References
Di Sabatino, A., Gerecke, R., Gledhill, T. & Smit, H. (2010) Acari: Hydrachnidia II. In: Gerecke, R. (Ed), Chelicerata: Acari II. Süsswasserfauna von Mitteleuropa, Vol. 7, 2–2, Elsevier Spektrum Akademischer Verlag, Heidelberg, pp. 1–234.
Di Sabatino, A., Gerecke, R., Smit, H., Pesic, V. & Panesar, A. (2003) Water mites of the family Torrenticolidae (Acari, Actinedida, Hydrachnidia) from the Eastern Mediterranean region. Archiv für Hydrobiologie Supplement, 139 (3), 1–39.
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high 679 throughput. Nucleic acids research, 32 (5), 1792–1797.
https://doi.org/10.1093/nar/gkh340
Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.2307/2408678
Gerecke, R., Gledhill, T., Pešić, V. & Smit, H. (2016) Chelicerata: Acari III. In: Gerecke, R (Ed), Süsswasserfauna von Mitteleuropa, Bd. 7/2 -3. Springer-Verlag Berlin, Heidelberg, pp. 1–429.
https://doi.org/10.1007/978-3-8274-2689-5
Jovanović, M., Manović, A. & Pešić, V. (2024) An updated checklist of water mites (Acari, Hydrachnidia) of Serbia with new records revealed by DNA barcodes. Ecologica Montenegrina, 74, 9–20. https://doi.org/10.37828/em.2024.74.2
Peláez, M.L., Horreo, J.L., García-Jiménez, R. & Valdecasas, A.G. (2022) An evaluation of errors in the mitochondrial COI sequences of Hydrachnidia (Acari, Parasitengona) in public databases. Experimental and Applied Acarology, 86, 371–384.
https://doi.org/10.1007/s10493-022-00703-0
Pešić, V. & Goldschmidt, T. (2023) New DNA-assisted records of water mites from Sardinia, with the description of a new species (Acari, Hydrachnidia). Ecologica Montenegrina, 69, 24–44.
https://doi.org/10.37828/em.2023.69.4
Pešić, V. & Smit, H. (2022) Water mites of Corsica: DNA barcode and morphological evidences. International Journal of Acarology, 48, 418–428.
https://doi.org/10.1080/01647954.2022.2086619
Pešić, V., Valdecasas, A.G. & García- Jimenez, R. (2012) Simultaneous evidence for a new species of Torrenticola Piersig, 1896 (Acari, Hydrachnidia) from Montenegro. Zootaxa, 3515, 38–50.
https://doi.org/10.11646/zootaxa.3515.1.2
Pešić, V., Zawal, A., Manović, A., Bańkowska, A., Jovanović, M. (2021 a) A DNA barcode library for the water mites of Montenegro. Biodiversity Data Journal, 9, e 78311.
https://doi.org/10.3897/BDJ.9.e78311
Pešić, V, Jovanović, M., Manović, A., Karaouzas, I. & Smit, H. (2021 b) New records of water mites from the Balkans revealed by DNA barcoding (Acari, Hydrachnidia). Ecologica Montenegrina, 49, 20–34. https://doi.org/10.37828/em.2021.49.2
Pešić, V., Zawal, A., Saboori, A., Bańkowska, A., Cakmak, I. & Smit, H. (2023) New records of water mites (Acari, Hydrachnidia) from Iran and Türkiye based on morphology and DNA barcodes with description of one new species. Ecologica Montenegrina, 66, 11–29.
https://doi.org/10.37828/em.2023.66.2
Pešić, V., Zawal, A., Ferreira, S., Benitez- Bosco, L., Cruz-Oliveira, A., Girão, D., Padilha, A., Turaccio, P., Rossini, S., Ballini, L., Staffoni, G., Fratini, S., Ciofi, C., Iannucci, A., Ekrem, T. & Stur, E. (2024) DNA barcode library of Portuguese water mites, with the descriptions of two new species (Acari, Hydrachnidia). ZooKeys, 1217, 119–171. https://doi.org/10.3897/zookeys.1217.131730
Pešić, V., Zawal, A., Gülle, P., Gülle, İ., Jovanović, M., Bańkowska, A., Musielak, S. & Smit, H. (2025 a) Water mite diversity from southwestern Türkiye through the lens of the DNA barcodes, with the description of one new species (Acari, Hydrachnidia). ZooKeys, 1232, 205–236.
https://doi.org/10.3897/zookeys.1232.142699
Pešić, V., Zawal, A., Bańkowska, A., Araujo, R., Sługocki, Ł., Rewicz, T., Krakowiak, M., Michoński, G., Girão, D., Silva, L. P. d., Órfão, I., M. Raposeiro, P., Ballini, L., Stryjecki, R., Ekrem, T. & Ferreira, S. (2025 b) Exploring the water mite fauna (Acari, Hydrachnidia) of the Madeira archipelago: DNA Barcoding reveals a remarkable species endemicity. Zootaxa, 5621 (5), 501– 513. https://doi.org/10.11646/zootaxa.5621.5.1
Pešić, V., Bankowska, A., Goldschmidt, T., Hårsaker, K., Jovanović, M., Kaitetzidou, E., Krakowiak, M., Kozłowska, A., Michaloudi, E., Michoński, G., Miliša, M., Pozojević, I., Rewicz, T., Rusiniak, O., Sobolak, K., Szućko, I., Stryjecki, R., Stur, E., Szlauer- Łukaszewska, A., Szenejko, M. & Zawal, A. (2025 c) Checklist of water mites from the Balkan Peninsula: second supplement, new DNA barcodes and description of a new species. Zootaxa, 5676 (1), 1–74.
https://doi.org/10.11646/zootaxa.5676.1.1
Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The barcode of life data system. Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Smit, H. (2020) Water mites of the world, with keys to the families, subfamilies genera and subgenera (Acari: Hydrachnidia). Monografieën van de Nederlandse Entomologische Vereniging, 12, 1– 774.
Szenejko, M., Zawal, A., Zawal, E., Saboori, A., Krzynówek, Z., Krakowiak, M., Chatterjee, T. & Pešić, V. (2023) New records of Torrenticola cf. meridionalis from Babia Góra Mountain (Poland). Persian Journal of Acarology, 12 (2), 241–248.
https://doi.org/10.22073/pja.v12i2.80515
Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. MolecularBiology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Zhang, Z.-Q., Fan, Q.-H., Pešić, V., Smit, H., Bochkov, A.V. Khaustov, A.A., Baker, A., Wohltmann, A., Wen, T., Amrine, J.W., Beron, P., Lin, J., Gabrys, G. & Husband, R. (2011) Order Trombidiformes Reuter, 1909. In: Zhang, Z.-Q. (Ed), Animal biodiversity: An outline of higherlevel classification and survey of taxonomic richness. Zootaxa, 3148, 129–138.
Supplementary material
List of Torrenticola specimens used for building the Neighbour-Joining (NJ) tree ( Fig. 4 View Figure 4 ). BINs are based on the barcode analysis from 1 August 2025.
RMNH |
National Museum of Natural History, Naturalis |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
|
Genus |